Characterization of two virulence proteins secreted by rabbit enteropathogenic Escherichia coli, EspA and EspB, whose maximal expression is sensitive to host body temperature.
نویسندگان
چکیده
Enteropathogenic Escherichia coli (EPEC) and rabbit EPEC (RDEC-1) cause unique histopathological features on intestinal mucosa, including attaching/effacing (A/E) lesions. Due to the human specificity of EPEC, RDEC-1 has been used as an animal model to study EPEC pathogenesis. At least two of the previously identified EPEC-secreted proteins, EspA and EspB, are required for triggering host epithelial signal transduction pathways, intimate adherence, and A/E lesions. However, the functions of these secreted proteins and their roles in pathogenesis have not been characterized. To investigate the function of EspA and EspB in RDEC-1, the espA and espB genes were cloned and their sequences were compared to that of EPEC O127. The EspA proteins showed high similarity (88.5% identity), while EspB was heterogeneous in internal regions (69.8% identity). However, RDEC-1 EspB was identical to that of enterohemorrhagic E. coli serotype O26. Mutations in RDEC-1 espA and espB revealed that the corresponding RDEC-1 gene products are essential for triggering of host signal transduction pathways and invasion into HeLa cells. Complementation with plasmids containing EPEC espA or/and espB genes into RDEC-1 mutant strains demonstrated that they were functionally interchangeable, although the EPEC proteins mediated higher levels of invasion. Furthermore, maximal expression of RDEC-1 and EPEC-secreted proteins occurred at their respective host body temperatures, which may contribute to the lack of EPEC infectivity in rabbits.
منابع مشابه
Two Enteropathogenic Escherichia coli Type III Secreted Proteins, EspA and EspB, Are Virulence Factors
Enteropathogenic Escherichia coli (EPEC) belongs to a family of related bacterial pathogens, including enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other human and animal diarrheagenic pathogens that form attaching and effacing (A/E) lesions on host epithelial surfaces. Bacterial secreted Esp proteins and a type III secretion system are conserved among these pathogens and trigger host ...
متن کاملEnteropathogenic Escherichia coli virulence genes encoding secreted signalling proteins are essential for modulation of Caco-2 cell electrolyte transport.
The pathophysiology of enteropathogenic Escherichia coli (EPEC) diarrhea remains uncertain. In vitro, EPEC stimulates a rapid increase in short-circuit current (Isc) across Caco-2 cell monolayers coincident with intimate attaching and effacing (A/E) bacterial adhesion. This study has examined the roles of specific EPEC virulence proteins in this Isc response. EPEC genes encoding EspA, EspB, and...
متن کاملInteractions and predicted host membrane topology of the enteropathogenic Escherichia coli translocator protein EspB.
Type 3 secretion systems (T3SSs) are critical for the virulence of numerous deadly Gram-negative pathogens. T3SS translocator proteins are required for effector proteins to traverse the host cell membrane and perturb cell function. Translocator proteins include two hydrophobic proteins, represented in enteropathogenic Escherichia coli (EPEC) by EspB and EspD, which are thought to interact and f...
متن کاملAlpha 1-antitrypsin binds to and interferes with functionality of EspB from atypical and typical enteropathogenic Escherichia coli strains.
Enteropathogenic Escherichia coli (EPEC), including diffusely adhering atypical E. coli, strains use a type III secretion system to deliver effector proteins into the membrane and cytoplasm of infected cells. The E. coli secreted proteins A, B, and D (EspA, EspB, and EspD) are required for the formation of the characteristic attaching and effacing (A/E) lesions. EspB and EspD are thought to for...
متن کاملType III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli.
Enteropathogenic Escherichia coli (EPEC) was found to exhibit a type III secretion-dependent, contact-mediated, hemolytic activity requiring the EspA, EspB, and EspD secreted proteins. EspB and EspD display homology to pore-forming molecules. Our data suggest a mechanism to explain the requirement for all three Esp proteins in the transfer of EPEC proteins, such as Tir, into target cells.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 65 9 شماره
صفحات -
تاریخ انتشار 1997